Genotoxicity of 1,3-butadiene and its epoxy intermediates.

نویسندگان

  • Vernon E Walker
  • Dale M Walker
  • Quanxin Meng
  • Jacob D McDonald
  • Bobby R Scott
  • Steven K Seilkop
  • David J Claffey
  • Patricia B Upton
  • Mark W Powley
  • James A Swenberg
  • Rogene F Henderson
چکیده

Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-exposed humans. HEI sponsored an earlier investigation of mutagenic responses in mice and rats exposed to BD, or to the racemic mixture of 1,2-epoxy-3-butene (BDO) or of 1,2,3,4-diepoxybutane (BDO2; Walker and Meng 2000). In that study, our research team demonstrated (1) that the frequency of mutations in the hypoxanthine-guanine phosphoribosyl transferase (Hprt) gene of splenic T cells from BD-exposed mice and rats could be correlated with the species-related differences in cancer susceptibility; (2) that mutagenic-potency and mutagenic-specificity data from mice and rats exposed to BD or its individual epoxy intermediates could provide useful information about the BD metabolites responsible for mutations in each species; and (3) that our novel approach to measuring the mutagenic potency of a given chemical exposure as the change in Hprt mutant frequencies (Mfs) over time was valuable for estimating species-specific differences in mutagenic responses to BD exposure and for predicting the effect of BD metabolites in each species. To gain additional mode-of-action information that can be used to inform studies of human responses to BD exposure, experiments in the current investigation tested a new set of five hypotheses about species-specific patterns in the mutagenic effects in rodents of exposure to BD and BD metabolites: 1. Repeated BD exposures at low levels that approach the occupational exposure limit for BD workers (set by the U.S. Occupational Safety and Health Administration) are mutagenic in female mice. 2. The differences in mutagenic responses of the Hprt gene to BD in similarly exposed rodents of a given species (reported in various earlier studies) are primarily associated with age-related thymus activity and trafficking of T cells and with sex-related differences in BD metabolism. 3. The mutagenic potency of the stereochemical forms of BD's epoxy intermediates plays a significant role in the species-related mutagenicity of BD. 4. The hydrolysis-detoxification pathway of BD through 1,2-dihydroxy-3-butene (BD-diol) is a major contributor to mutagenicity at high-level BD exposures in mice and rats. 5. Significant and informative species-specific differences in mutation spectra can be identified by examining both large- and small-scale genetic alterations in the Hprt gene of BD-exposed mice and rats. The first four hypotheses were tested by exposing mice and rats to BD, meso-BDO2, or BD-diol and measuring Hprt Mfs as the primary biomarker. For this, we used the T-cell-cloning assay of lymphocytes isolated from the spleens of exposed and control (sham-exposed) mice and rats. The first hypothesis was tested by exposing female B6C3F1 mice (4 to 5 weeks of age) by inhalation for 2 weeks (6 hours/day, 5 days/week) to 0 or 3 ppm BD. Hprt Mfs were measured at the time of peak mutagenic response after exposure for this age of mice. We then compared the resulting data to those from mutagenicity studies with mice of the same age that had been exposed in a similar protocol to higher levels of BD (Walker and Meng 2000). In mice exposed to 3 ppm BD (n = 27), there was a significant 1.6-fold increase over the mean background Hprt Mf in control animals (n = 24, P = 0.004). Calculating the efficiency of Hprt mutant induction, by dividing induced Hprt Mfs by the respective BD exposure levels, demonstrated that the mutagenic potency of 3 ppm BD was twice that of 20 ppm BD and almost 20 times that of 625 or 1250 ppm BD in exposed female mice. Sample-size calculations based on the Hprt Mf data from this experiment demonstrated the feasibility of conducting a future experiment to find out whether induced Mfs at even lower exposure levels (between 0.1 and 1.0 ppm BD) fit the supralinear exposure-response curve found with exposures between 3.0 and 62.5 ppm BD, or whether they deviate from the curve as Mf values approach the background levels found in control animals. The second hypothesis was tested by estimating mutagenic potency for female mice exposed by inhalation for 2 weeks to 0 or 1250 ppm BD at 8 weeks of age and comparing this estimate to that reported for female mice exposed to BD in a similar protocol at 4 to 5 weeks of age (Walker and Meng 2000). For these two age groups, the shapes of the mutant splenic T-cell manifestation curves were different, but the mutagenic burden was statistically the same. These results support our contention that the disparity in responses reported in earlier Hprt-mutation studies of BD-exposed rodents is related more to age-related T-cell kinetics than to age-specific differences in the metabolism of BD. The third hypothesis was tested by estimating mutagenic potency for female mice and rats (4 to 5 weeks of age) exposed by inhalation to 2 or 4 ppm meso-BDO2 and comparing these estimates to those previously obtained for female mice and rats of the same age and exposed in a similar protocol to (+/-)-BDO2 (Meng et al. 1999b; Walker and Meng 2000). These exposures to stereospecific forms of BDO2 caused equivalent mutagenic effects in each species. This suggests that the small differences in the mutagenic potency of the individual stereoisomers of BDO2 appear to be of less consequence in characterizing the sources of BD-induced mutagenicity than the much larger differences between the mutagenic potencies of BDO2 and the other two BD epoxides (BDO and 1,2-dihydroxy-3,4-epoxybutane [BDO-diol]). The fourth hypothesis was tested in several experiments. First, female and male mice and rats (4 to 5 weeks of age) were exposed by nose only for 6 hours to 0, 62.5, 200, 625, or 1250 ppm BD or to 0, 6, 18, 24, or 36 ppm BD-diol primarily to establish BD and BD-diol exposure levels that would yield similar plasma concentrations of BD-diol. Second, animals were exposed in inhalation chambers for 4 weeks to 0, 6, 18, or 36 ppm BD-diol to determine the mutagenic potency estimates for these exposure levels and to compare these estimates with those reported for BD-exposed female mice and rats (Walker and Meng 2000) in which similar blood levels of BD-diol had been achieved. Measurements of plasma concentrations of BD-diol (via a gas chromatography and mass spectrometry [GC/MS] method developed for this purpose) showed these results: First, BD-diol accumulated in a sublinear manner during a single 6-hour exposure to more than 200 ppm BD. Second, BD-diol accumulated in a linear manner during single (6-hour) or repeated (4-week) exposure to 6 or 18 ppm BD and in a sublinear manner with increasing levels of BD-diol exposure. Third, exposure of female mice and rats to 18 ppm BD-diol produced plasma concentrations equivalent to those produced by exposure to 200 ppm BD (exposure to 36 ppm BD-diol produced plasma concentrations of about 25% of those produced by exposure to 625 ppm BD). In general, 4-week exposure to 18 or 36 ppm BD-diol was significantly mutagenic in female and male mice and rats. The differences in mutagenic responses between the species and sexes were not remarkable, except that the mutagenic effects were greatest in female mice. The substantial differences in the exposure-related accumulation of BD-diol in plasma after rodents were exposed to more than 200 ppm BD compared with the relatively small differences in the mutagenic responses to direct exposures to 6, 18, or 36 ppm BD-diol in female mice provided evidence that the contribution of BD-diol-derived metabolites to the overall mutagenicity of BD has a narrow range of effect that is confined to relatively high-level BD exposures in mice and rats. This conclusion was supported by the results of parallel analyses of adducts in mice and rats concurrently exposed to BD-diol (Powley et al. 2005b), which showed that the exposure-response curves for the formation of N-(2,3,4-trihydroxybutyl)valine (THB-Val) in hemoglobin, formation of N7-(2,3,4-trihydroxybutyl)guanine (THB-Gua) in DNA, and induction of Hprt mutations in exposed rodents were remarkably similar in shape (i.e., supralinear). Combined, these data suggest that trihydroxybutyl (THB) adducts are good quantitative indicators of BD-induced mutagenicity and that BD-diol-derived BDO-diol (the major source of the adducts) might be largely responsible for mutagenicity in rodents exposed to BD-diol or to hight levels of BD. The mutagenic-potency studies of meso-BDO2 and BD-diol reported here, combined with our earlier studies of BD, (+/-) BDO, and(+/-)-BDO2 (Walker and Meng 2000), revealed important trends in species-specific mutagenic responses that distinguish the relative degree to which the epoxy intermediates contribute to mutation induction in rodents at selected levels of BD exposures. These data as a whole suggest that , in mice, BDO2 largely causes mutations at exposures less than 62.5 ppm BD and that BD-diol-derived metabolites add to these mutagenic effects at higher BD exposures. In rats, it appears that the BD-diol pathway might account for nearly all the mutagenicity at the hight-level BD exposures where significant increases in Hprt Mfs are found and cancers are induced. Additional exposure-response studies of hemoglobin and DNA adducts specifics to BDO2, BDO-diol, and other reactive intermediates are needed to determine more definitively the relative contribution of each metabolite to the DNA alkylation and mutation patterns induced by BD exposure in mice and rats. For the fifth hypothesis, a multiplex polymerase chain reaction (PCR) procedure for the analysis of genomic DNA mutations in the Hprt gene of mice was developed. (ABSTRACT TRUNCATED)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomonitoring of 1,3-butadiene and related compounds.

The 1990 Clean Air Act Amendments list several volatile organic chemicals as hazardous air pollutants, including ethylene oxide, butadiene, styrene, and acrylonitrile. The toxicology of many of these compounds shares several common elements such as carcinogenicity in laboratory animals, genotoxicity of the epoxide intermediates, involvement of cytochrome P450 for metabolic activation (except et...

متن کامل

Inhibition of cytochrome P450 2E1 decreases, but does not eliminate, genotoxicity mediated by 1,3-butadiene.

1,3-Butadiene (BD), a rodent carcinogen, is metabolized to mutagenic and DNA-reactive epoxides. In vitro data suggest that this oxidation is mediated by cytochrome P450 2E1 (CYP2E1). In this study, we tested the hypothesis that oxidation of BD by CYP2E1 is required for genotoxicity to occur. Inhalation exposures were conducted with B6C3F1 mice using a closed-chamber technique, and the maximum r...

متن کامل

Analysis of diepoxide-specific cyclic N-terminal globin adducts in mice and rats after inhalation exposure to 1,3-butadiene.

1,3-Butadiene is an important industrial chemical used in the production of synthetic rubber and is also found in gasoline and combustion products. It is a multispecies, multisite carcinogen in rodents, with mice being the most sensitive species. 1,3-Butadiene is metabolized to several epoxides that form DNA and protein adducts. Previous analysis of 1,2,3-trihydroxybutyl-valine globin adducts s...

متن کامل

Metabolism and mutagenicity of isoprene.

Liver microsomes of various rodents (mouse, rat, rabbit, and hamster) metabolize isoprene (2-methyl-1,3-butadiene) to the corresponding monoepoxides 3,4-epoxy-3-methyl-1-butene and 3,4-epoxy-2-methyl-1-butene. 3,4-Epoxy-3-methyl-1-butene (half-life 85 min) was found to be the main metabolite, although the stable 3,4-epoxy-2-methyl-1-butene was also formed (about 14-25% with respect to the main ...

متن کامل

Major Groove Orientation of the (2S)‐N‐(2-Hydroxy-3-buten-1-yl)-2′- deoxyadenosine DNA Adduct Induced by 1,2-Epoxy-3-butene

1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated geno...

متن کامل

A crossed molecular beam and ab initio study on the formation of 5- and 6-methyl-1,4-dihydronaphthalene (C11H12) via the reaction of meta-tolyl (C7H7) with 1,3-butadiene (C4H6).

The crossed molecular beam reactions of the meta-tolyl radical with 1,3-butadiene and D6-1,3-butadiene were conducted at collision energies of 48.5 kJ mol(-1) and 51.7 kJ mol(-1). The reaction dynamics propose a complex-forming reaction mechanism via addition of the meta-tolyl radical with its radical center either to the C1 or C2 carbon atom of the 1,3-butadiene reactant forming two distinct i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Research report

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2009